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ABSTRACT

The moment-thrust-curvature (M-P-&) relationship of grout-repaired dented tubular

sections was studied by deriving formulas as functions of the level of deformation.

Both materials, steel and concrete, were assumed to have bi-linear elastic-plastic
stress-strain relationships except that the grout had no strength in tension and that its post-
ultimate strain was limited by the crushing strain. Moreover, it was assumed that the strain
distribution in the cross section was planar and that the axial strains in the steel shell and the

grout core were fully compatible.

By varying the location of the neutral axis and the value of curvature, the relationship
between the axial load and curvature could be defined for a given load eccentricity. The

ultimate load was given by the peak of the resultant curve.

The method was applied to analyze six grouted test specimens: three dented and three
undented. The resultant ultimate loads were compared with the test loads and the loads
according to the formula proposed by Parsanejad. The method tended to give somewhat

higher ultimate loads than the test loads.

The method was then used to compute the ultimate loads for seven specimens planned

in the testing program proposed for future research.

A FORTRAN computer program was written to facilitate the iterative computations

involved in the method.
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S1. INTRODUCTION

S1.1 Background

This work was performed in anticipation of funding for Area 4 of the project ("Repair
of Dented Members -- Segment Approach”) which included tests on short fabricated tubes
damaged by deep dents and then repaired by internal grouting.' The objective of the tests
was to provide experimental information on the moment-thrust-curvature relationship of such
tubes in order to verify analytical (finite element) methods. Since the specimens were to be
made from the undisturbed portions of the tubular columns tested in a previous project [S4],
and some of them were of such dimensions (D = 24.5 in.) that the loads required could have
exceeded the capacity of available testing machines, it was necessary to be able to calculate
their ultimate strengths in order to design them so that they could be loaded to their
maximum capacity. The purpose of the resultant method and the computer program based

on it was to provide such a tool.

S1.2 Project Description

The study performed examines tubuiar members typically used in offshore structures.
These structural members are continuously exposed to the possibility of damage from impact
by ships or dropped objects. This type of damage is usually in the form of a dent or a
combination of a dent and overall out-of-straightness. The main concern is the residual
strength of these damaged tubular members. Most of the time, it is not economically
advantageous to replace the damaged member and alternative repair methods must be
considered. One such method is internal grouting which is finding more frequent use in
industry due to its cost effectiveness over other methods, such as underwater welding and

ciamped sieeves.[S3]

' Insufficient funding precluded research on Area 4 at the time.
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The purpose of internal grouting is to increase the residual strength of a damaged
tubular member supplying additional material, but mainly by providing resistance to further
distortion of the dented cross section. The following four parameters influencing the strength
of the repaired member are studied: diameter-to-thickness ratio (D/t), dent depth-to-diameter
ratio (d/D}, yield stress of steel (F,), and ultimate strength of grout (f;). A method is
formulated for computing the moment-thrust-curvature (M-P-&) relationship of a dented,
grout-repaired cross section under eccentric loading. To facilitate calculations, the method

was incorporated into a computer program.

Chapter 2 describes the method. Chapter 3 describes the material models for grout
and steel used in the analysis. Chapter 4 presents the algorithm which was used in the
computer program. Chapters 5 and 6 present the results from the analysis of thirteen grout-
filled, damaged members. Specifically, Chapter 5 presents the results from the computer
program, other analytical methods and experiments and their comparison, and Chapter 6
describes the analysis and a simple parametric study of D/t, d/D, F, and f; based on the

results from the thirteen grout-filled dented tubular members which included the projected

test specimens.

Finally, Chapter 7 presents the summary, conclusions and recommendations for future
studies. Appendix SA provides an address for obtaining the FORTRAN computer program
developed for this simphfied analysis.

S1.3 Previous Work!

The analysis and testing of tubular members repaired by internal grouting has been

undertaken by several researchers, notably Parsanejad [S5], Boswell {$2]. Ricles [S8],

' Since the work for this report was performed in 1993, some later publications
have not been reviewed.
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Renauit [S7], and Loh {S3]. A complete state-of-the-art review of the technique of internal
grouting as a repair method was conducted by Loh [$3].

Investigation of small-scale specimens by Parsanejad was one of the first endeavors
into examining grouting as a repair method for dented tubular members.[S5] An analytical

expression was developed to estimate the ultimate capacity of such members.

Ricles investigated both internal grouting methods and clamped sleeve repair of dented
tubulars.[S8] Three dented, internally grouted specimens with D/t ratios of 34.5, 46 and 64

and an L/r ratio of 60 were tested.

Boswell and D’Mello conducted tests on grout-filled damaged tubulars with D/t ratios
of 23, 29 and 48. Besides the D/t ratio, the following four other parameters were found to

have an effect on the behavior and strength: d/D, L/r, scale effects and grout age.

Renault and Quillevere conducted experiments on nine grout-filled, damaged tubes,
approximately 15 feet in length, that had a large extent of damage (0.50 and 0.64 dent depth-
to-diameter ratio (d/D)) in addition to an initial o.uiuoﬂstraightness.{S?] All of these
specimens had a D/t of approximately 22. In addition to testing, a preliminary finite element
analysis was performed for both tensile and compressive loadings. It was found from both
tests and finite element analysis that the main effect of internal grouting was to prevent or

delay the development of a plastic hinge due to local buckling.[S7]

The survey by Loh examined grouting over both the full and partial length of
damaged tubulars.[S3] The purpose was to compare current analytical approaches and test
data used in determining the ultimate strength of grout-filled tubular members, depending on
whether they were fully or partially filled. Additionally, existing technical guidance was

summarized and identification of additional work for testing and analysis was proposed.
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S1.4 Objectives of Current Study

The objective of the current study is to establish a database for the M-P-¢ relationship
of grout-filled, dented tubular segments and to give an estimate of their residual strength.
The resultant M-P-¢ relationships can then be incorporated into a numerical integration

program for the analysis of long columns.
S1.5 Assumptions

To facilitate analysis, the following assumptions were made for a grout-filled dented

tube segment to allow for the ease of implementation into a computer program.

1) Strain distribution in the cross section is planar and deformations of steel and concrete are
compatible.

2) Steel 1s assumed to have an elastic-perfectly plastic stress-strain relationship without strain-
hardening.(Fig. $3-1)

3) Grout is assumed to be elastic-perfectly plastic with an ultimate strain of 0.003 in./in.
Thus, any portion of the grout which reaches this strain can no longer sustain any
load or moment.(Fig. $3-2)

4) Grout cannot take any tensile strain, i.e., its modulus of elasticity for tensile loading is
zero.

5) In order to preserve the area of the steel, the dented portion of the steel shell is treated
as a rectangle extending beyond the edges of the dent as shown in Fig. S1-1. The

circular portion of the section is assumed to remain unchanged.

In Figure S1-1, the actual shape of the damaged tube 1s approximately indicated with
heavy dashed fines. The idealized geometry of a dented tube is superimposed using solid
lines. Ii can be seen that near the dented portion, there is distinct bulging of the tube wali

with a rather complicated geometry. This is simplified by assuming the shape unchanged
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below the dent and, to maintain the same cross-sectional area of steel, by replacing the
portion above the dent with a flattened, rectangular shape. The additional area extending
outside the undamaged portion of the tube is taken into account in calculating the cross-
sectional properties, specifically, the moment of inertia, static moment of area and location

of the neutral axis.
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S2. PROCEDURE OF THE METHOD

S2.1 Introduction

As indicated in Figs. $2-1a and $2-1b, calculation of the total load and moment acting
on the cross section is based on first calculating the elastic load and moment for an
undamaged cross section, and then subtracting those portions of the load and moment that
have yielded or crushed (the yielded area is shown as the triangular portion extending beyond
€ and the crushed portion is shown as the darkened rectangle that has width €.} These
vielded and crushed portions of the stress diagram for grout over the Cross section can be
thought of as an orange wedge, and, for steel, an orange rind.(Figs. $2-2 and S2-3) This

terminology of wedges and rinds is used in subsequent presentation.

82.2 Cross-Sectional Properties

82.2.1 Transformed Section
The first step in analyzing a damaged, grout-filled section is to calculate the cross-
sectional properties -- area, static moment of area and moment of inertia - for both the steel

shell and grout core assumed to remain elastic,

Figure $2-1 shows that the extent of dent damage is defined by the depth of the dent
d and the angle subtended by the dented portion a,.

R~
a, = ccs‘l(——‘»_) (S2-1)
R

i

where R, is the inner radius,




For a symmetrical cross section, the centroid is at the center of the circle C.  As
shown in Fig. $2-4, the presence of a dent complicates the analysis since the centroid of the
cross section is shifted below the center axis. The location of the centroid is found by taking
the first moment of area and dividing by the total area. For simplification purposes, the area
of the grout is transformed to an equivalent steel area by dividing it by the modular
ratio n.[S6]

Modular Ratio:

E
I (S2-2)
EK

Thus, in all subsequent computations, transformation is made to steel by dividing the
grout contribution by the modular ratio. Separate calculations are performed for the grout

and steel sections to facilitate the analysis of the centroidal shift.

§2.2.2 Grout

For the first moment of area of the grout portion, a simple approach is taken by
considering the whole circle and subtracting the portion above the dent as shown by the
shaded portion in Fig. S2-1a. By definition, the static moment of area for a circle is, with

the lever arm being a function of both r and «a,

R,

Q- f [ v r dr de (52-3)
0

[t}

For a damaged, circular cross section, the static moment of the solid core is

2n B ey, R
Qg=ffrzcosadrda+%R3cesm&sinzaé«ffrcasadrda (52-4)
[ ~ay 0

Referring to Fig. $2-5a, the first term is the full circular portion of the grout, the second
term is the triangular portion of grout directly below the dent, fabeled 'T1’, and the third

term is the circular wedge of the dented portion, labeled "T2’, that is subtracted. Since the

§2-2




origin and centroid of the circle coincide, the first term drops out and the resulting equation

becomes

Q- -§— R? cos’a, sine, - 32« R} sina, (82-5)

$2.2.3 Steel
For steel, a simplification is made for the dented portion, as described in Sect. S1.3.

The static moment of area for steel after the replacement of the dented portion is
”““d

Q, = f R tcosedn +2 a, Rt cosa 4 (S2-6a)

ud—a
where R, is the mid-thickness radius

R, =R + ($2-6b)

m

(SR

Referring to Figure $2-5b, the first term is the static moment of area for the undamaged
circular portion of the tube and the second term is the flattened portion of steel. The

resulting equation is
Q =2R?¢t [, cos(a 2~ sin(a )] (82-7)

82.2.4 Centroid

As mentioned previously, the steel area is enforced to remain the same, damaged or
undamaged. The grout area is decreased by the amount lying above the dent. This reduction
gives a slightly smaller area than for an actual dented section which bulged at the sides of
the dent. However, the difference is negligibly small. The resulting area equations for steel

and grout, respectively, are given by Eqs. $2-8a and S2-8b.




A, = 27Rt (52-8a)

Ag = Riz [t-a, + cose, sine ] {S2-8b)

The centroid shift of the damaged cross section is then calculated after transforming

the grout contributions to steel properties. The result for the centroidal shift is

QX
. S QS

y = n (82-9)
f& + A
" 5

Figure S2-4 shows the location of the centroid relative to the central axis as well as the sign

convention for coordinate axes x and y.

$2.2.5 Moment of Inertia

The basic equation for the moment of inertia about the center is

Icemer = Irrcg, + A;Z (52-103)
where
loee = [ ¥ A (S2-10b)

The process of computing the moment of inertia is analogous to the computation of the areas
and first moments of area (static moment): the properties are first computed for steel and

grout portions with respect to the center, then, transformed to steel and adjusted for the

centroidal shift.

The moment of inertia of the steel portion about the center is calculated similarly w©
the static moment of area, that is, by using the contributions from the undamaged portion and

the flattened section.(Fig. S2-5b) The moment of inertia equation for the steel shell is given
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by Eq. $2-11a.

Ty

L= [ R ¢, cos(@)da +2R}¢a,cos(a ) (S2l1a)

K - ﬂdg
After integration and setting the Hmits, the final result is

R3¢
== [02n-2q-sin2e,+4a,cosda, ] (§2-11b)

For grout, the moment of inertia about the center is

e B R? cos’e, sing
I = f f r? cos’a dr de + 4 ¢ (82-12a)
& 2
—(x-ud) i)
and after integration,
4
1 = }L 2% -2a,-sina, +4 cos’a,, sina, ) (52-12b)

The transformed moment of inertia with respect to the central axis of the undamaged tube

is

I=1 + £ (82-13a)

A, = A + 8 (S2-13b)

where A, and A, are from Eqgs. 52-8a and $2-8b, respectively. Thus, the fotal moment of

inertia about the centroid of the damaged section is given by Eg. S2-14.
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7 (S2-14)

$2.3 Location of Neutral Axis

In order to determine the state of stress in a dented cross section under load with a
given eccentricity it is necessary to locate the neutral axis, that is, the location where the

stress is zero. For a planar distribution of stresses, the equation for zero stress is

p  Ma, (S2-152)
Apce Im:x

where a,, is the y-coordinate from the centroid of the damaged cross section to the neutral
axis. With M= Pe,, the equilibrium equation becomes

P [P a
A i

reg reg

=0 (§2-15b)

where €, is the given eccentricity. Then, BEg. $2-15¢ gives

P 1 + es acs
A

tr’ cx tr!cg

=0

(82-15¢)

Since P # 0, it follows that=[ ] = 0

Figure $2-4 shows the location of the neutral axis with respect to the center and with respect

to the distance separating the two axes, @.,. The solution for @, is given by Eq. $2-16.

a = B Iir,cg
* A"aﬁg 83
(82-16)
a o= Ty
H eg& Aﬁfﬁg gg
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Then, the distance of the neutral axis from the center of the undamaged tube is

a=a,+y (S2-17)

82.4 Equations for Moment and Axial Load

To analyze a grout-filled, dented tube, it is neécessary to calculate the load and
moment for both the grout core and steel shell acting on the cross section for a certain state
of strain. First, equations are derived for an undented cross section. Then, they are adjusted
to consider dent damage and various physical states, such as tension, compression, crushing

and yielding. Closed-form solutions are derived for each physical state.

82.4.1 Elastic Load and Moment for an Undamaged Section

The elastic load and moment are calculated by considering the state of stress at the
central axis of the undamaged cross section. Figure $2-6 shows the elastic stress condition
in an undamaged cross section, and it can be seen that both load and moment are dependent
on the value of curvature ¢ and the location of the neutral axis @. The total elastic load is
independent of the centroid location. However, the location of the neutral axis and the
amount of curvature determine the value of the elastic load and moment. The neutral axis
is assumed 10 be located at some distance a below the central axis. Taking axial equilibrium
over the entire undamaged area, the elastic load is the elastic stress at the centroid times the

total area of the undamaged tube.

P =0 A (52-18)

& £ tr

The equation for the elastic load of a grout-filled tube is given by Eq. §2-19.
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P,=P, +P =0 A +a A

P, =¢Ea(nR?) (82-19)

P,=¢Ea(2nR,1)

For a grouted tube, the total elastic moment is

M, =M, + M,

. (§2-20a)
M,=E I ¢

-4
M =E ¢

£

i

or

M, - E, { Lk } o ($2-20b)
n
In this formulation, the moment of inertia for the grout and steel are not combined into a

transformed moment of inertia.

§2.4.2 Grout Under Tension and in the Dented Region

In Sect. S1.3, it was assumed that the grout cannot take any tensile strain. Therefore,
if the neutral axis is located within the cross section, the tensile grout load and moment must
be deducted from Egs. S2-19 and 52-20b.(Fig. §2-7) Also, the grout portion that would
exist in the dented portion if the tube were undamaged, must be deducted as well to find the

total elastic load and moment acting on the damaged cross section.(Fig. S2-1a)

The approach for both regions is exactly the same, with the difference being the limits
of integration for the angle. The tension region is subtended by an angle denoted "o, and,
from Sect. §2.1, the dented portion is subtended by an angle denoted "¢ry" (Fig. S2-iay The
equations presented in this section are applicable for either the tension or dented region of

the grout core.
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The equation for the grout load in tension is given by Eq. S2-21a.

=2 ¢E, f f [ r* cos(a) - r R, cosa,, ] dr da 2210
¢ R cosla,)
T eos(zxy
The final result after integration is
$E R |
P, = ; g 2 sine,) - 3 e, cos(a,) + cos’(e ) sin(a M)} (82-21b)

For the dented portion, only a change of limits for the angle is required

=20 E, f f [ r* cos(a) - r R, cosa 4] drde  (82.229)
¢ R ces{sd}
cos(a)
with the final result being
¢ E R’ .
Py = —2 2 sm{ad) 3y cos(a) + cos'(a) sin(a,)] (52-22b)

The moment of the grout in the tension region is given by the following equation:

& R,

M, =2¢E, f f ?3 cos*(e) - r2 R, cos(a, ) cos(a)} dr da
G R cos{a, )
cos{u}

(82-23a)

After integrating, the result is

M, - ;4 [Gam - 5 sinQa,) + 4 cos¥(x,) sm(am)] (52-23b)

Similarly, the moment equation for the grout within the dented portion is piven

1 by
Eq. 52-24a.
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2, &

My =20E, [ [ [ cosi(a) - r* R cos(a,) cos(a)| dr de (S2-24a)
G R, coelay
cos{«}

The final result for the moment of the grout within the dented portion is

OE, R}
My = —3

[6a, - 5 sin(2a) + 4 cos™(e) sin(e))] (82-24b)

S$2.4.3 Effect of Denting

Since the area of steel before and after denting is the same, the axial load is not
affected by denting. However, the moment is reduced because the lever arm of the flattened
portion becomes smaller. Figures S2-8a and $2-8b show the area modified by denting and

the necessary parameters for calculating the lever arm.

Since the formulation is based on finding the total stress acting over an undamaged
tube and subtracting appropriate grout stress wedges and steel stress rinds, the effect of
denting will be considered by assuming the stress to consist of two parts: a constant block
portion acting over the dented steel area and a triangular stress wedge.(Fig. S2-8a) The
moment for the block portion is calculated by multiplying the strain at the mid-depth of the
flattened segment by the elastic modulus and the lever arm of the dented area, even if the
steel fibers in the dented portion have already yielded. The moment for the triangular
wedge, shown in Fig. S2-8a, is calculated by using Eq. S2-37b developed later in
Sect. $2.4.5 for steel under tension. The appropriate angle to be substituted into Eq. S2-37b

in Sect. S2.4.5 is the dent angle, oy,

The lever arm is found by dividing the first moment of area by the area of the arc
subtended by the dent angle. The equation for the lever arm with respect to the center axis

is given by Eg. 52-25a.
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L
2
f Rt cos(a) da (§2-252)

2y

2a,R t
‘The result of this equation is

- R, sin(a)

arce

(82-25b)

&,

Once the lever arm for the constant stress region acting on the dent portion is found, the
moment is then calculated by multiplying this value by the steel load in the segment.

If the fibers in the flattened segment have not yielded, the moment for the dented
portion is calculated based on the elastic strain in the dented portion. The moment is the
sum of two parts: an elastic block and an elastic wedge. (Fig. $2-8b) Equation §2-37b,
described in Sect. §2.4.5, accounts for the elastic wedge. The equation for the elastic block

of the moment is given by Eq. $2-26a.
M, =2¢ER": [sin{ad) - &, cos(a,) ]( R +a ~d)+Eq2-37b (82-26a)

However, once the flattened segment experiences yielding, the moment is the yield load
multiplied by the lever arm from Eq. $2-25b, The portion of the elastic stress wedge beyond
yield is accommodated for by Eq. S$2-37b described in Sect. $2.4.5.3. The equation for the
yield load of the dented portion multiplied by the lever arm is

My =2 R?zt sin(a,) - a, cos(a 2] F, + Eq 2-37b (S2-26b)
This is the total loss in moment due to denting.
S2.4.4 Summary: Total Elastic Load and Moment
The total elastic load and moment acting on the damaged cross section are found by

first finding the elastic equations for the undamaged portion (Sect. $2.4.1 -- with the grout

portion in tension subtracted if the neutral axis is located within the cross section,
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Sect. $2.4.2). Then, the damage is accommodated by subtracting the equations derived for
the grout portion within the dented region (Sect. $2.4.2) and the loss in moment due to

denting of the steel (Sect. §2.4.3).

Summarizing,
Load, P.:
P,=P +P - P,-P, (82-27)
and
Moment, M.:
M, =M, + M -M, -M, - M, (82-28)

$2.4.5 Strain Beyond the Yield Condition

If the strain in the grout and steel is elastic, the load and moment are calculated by
Eqs. §2-27 and S2-28. However, as the strain in the grout and/or steel reaches yield,
different equations are necessary. This section considers three inelastic cases that develop
as the curvature increases, and, consequently, the strain in each material becomes greater
than the yield level. The three cases are: yielded grout (compression), yielded steel
(compression or compression and tension), and crushing of grout. The equations for each
of these cases are then deducted from Egs. $2-27 and $2-28 to find the total load and

moment acting on the dented cross section.

$2.4.5.1 Yielded Grout Under Compression

Figures $2-9a and $2-9b show the general stress states of compression, above and

helow the central axis C, acting over a portion of the grout. The angle defining the location
of the yielded grout region «,,, is shown in Figs. $2-9a and 52-9b. The value of a,, depends
on whether the distance ¢ from the neutral axis to the closest yielded fiber is above or below

the central axis. Mathematically, «,, is found using Eqs. $2-29a or S2-29b.




Forc € a

o, = ces"(m) (52-29a)
or
forc 2 a
a, - cos‘*(f_:;ﬁ) (52-29b)
R,

If the yielded grout region lies above the central axis (¢ = a), the equations for grout under
tension (Eqs. $2-21 and $2-23) are used by substituting the angle o, for a,. On the other
hand, if the yielded grout region lies below the central axis {¢ < a), equations for the load
and moment must be derived by considering the neutral axis location and the angle o, All
the equations derived here are valid even if the neutral axis is outside the cross section, the

entire cross section is in compression, and significant yielding has occurred.

When the yielded portion extends below the central axis (¢ < a}, the total
compressive area of the grout core consists of two parts: a pie wedge-shaped portion of a
circle and a triangle. (Fig. $2-10) In this case, the value of ¢ is less than ¢ and Eq. §2-29a
is used for the angle limit in the integral below. The total load is found by integrating the

stress over these two areas as shown in Eq. $2-30a.

P, =2¢E f [ rcosa - R, cose, | r dr da +
“re (82-30a)

.
, &i 1 , - T !
[ R, sina 1 [ R cosa -cota %7

/ [ oda

& i

The first integral is for the wedge portion and the second integral is for the triangular portion
between the central and neutral axes.(Fig. 8$2-10) Integration of the above equation yields
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the solution for the total compressive load of the grout

3
p _OER

” 3 [3 a, cos(a,) - 3« cos(e,,) - 2 sinfa,) - (S2-30b)

casz(agc) sin(ec,,) }

Determination of the moment proceeds in a similar way. Using the same integration

limits as for the load, the moment equation becomes

Kxf
M, =2¢E, ff[ﬁcos"a - R, r? cose,, cosa | dr da
et (S2-31a)
[Risina, | | R cosa, - cote, x}
- [ [Resa,y-y*]dyar
0 0

The two integrals are for the full undamaged portion and the triangular portion below the
dent, respectively.(Fig. 82-10) The final result from this integration formula yields
Eq. S2-31b.

4
_ P E X (S2-31b)

i _ : - 3 :
M [z - 6a, +5sin2a, - 4 cos’a,, sina,

£¢

If ¢ is greater than ¢ (Fig. 52-9a), then o, from Eq. S2-29b is substituted for oy in
Eqgs. 82-21 and §2-23, as stated above.

52.4.5.2 Yielded Steel Shell Under Compression

The computation of the axial load of steel in compression is found in the same manner
as for grout. Figures S2-11a and S2-11b show the area under consideration. The angle a,,
in the figures is the angie measured from the central axis to the closest yielded steel fiber.
As with the grout described above, o, may have two values depending on the distance f from

the yieided fiber closest to the neutral axis.



Forf < a

o, = cos"[ﬁ-——:—fJ (S2-32a)
R
or
forf = a
o, - cas”‘(’f—-}%fJ ($2-32b)

In the case that the closest yielded steel fiber is above the central axis (Fig.82-11a),

Eq. $2-32b is substituted into Eq. $2-35b, the equation for steel load (tension), described in

Sect. $2.4.5.3, is used to find the load and moment for the steel shell under compression.

If the yielded steel fiber closest to the neutral axis is located below the central axis,

and using Eq. §2-32a is used, the compressive load acting on the steel sh

ell is given by
Eq. §2-33a.

%
Psc=2¢Esf

%

[ 77 cos(a) - r R, cos(e,) | dr da (82-33a)

—-h‘—-"': e.k

The total load acting in compression on the steel shell, with the location of the neutral axis

below the central axis of the undamaged tube but within the Cross section, is fo

und by
integrating the above expression,

Pe =20 E R [, -2 n cos(a,) - sin(a)] (S2-33b)

The higher-order terms involving the thickness are ignored since, in most cases, the diameter

is miuch greater than the thickness, I » 1.
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The calculation for the moment proceeds similarly as for grout in compression.

x R,
M,=2¢E f f ( r? cos*(x) r? cos(«) R, cos(a,) dr da (S2-34a)
R,

™

and, after integration, the result is Eq. 52-34b.
$ER,’ t . 1 .
M, = —SF— (27 - 2a, - sina,) + 4 cosQa,) sin(et,,)] (52-34b)

Again, the terms involving the thickness with the order higher than two are ignored.

§2.4.5.3 Yiel teel Shell Under Tension

For the case where the location of the neutral axis is within the cross section, the
strain in the steel fibers below the neutral axis is tension.(Fig. S2-12) The contribution of
these steel fibers to the load is expressed by Eq. $2-35a

u, R,

f f [ ¢ cos(e) - 7 R, cos(a,) | dr da (S2-35a)

0 R,

where a, is the angle defining the extent of the steel region that has yielded. Angle oy is
found in a similar fashion as o, and «,,, but here the distance from the yielded fiber to the
central axis is the distance from the neutral axis to the central axis and is denoted by 'b’ as

shown in Fig. $2-12.
o4 b
«, = cos {w] (S2-36)

The final result after integration gives Eq. 82-35b.

¢ ES R ' z H o v i
o —-—m—iu’#'im [ (20, + sinay) ) - 4 cos(ay) sinay) | (§2-35b)

The moment equation for steel in tension is given by Eq. $2-37a.
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M, - ¢ E}Rf t

(82-37b)

[2 &y sin(a,) - 4 cos(a,) sina,) |

Then, integration gives Eq. §2-37b for the magnitude of the moment in the tension region

of the steel shell.

o &

M, =2¢E, f f{ r® cos’(a) - R r? cos(e,) cos(e) }dr da (82-37a)
o R

4.3.4_Crushing of Gr

When the strain in the grout becomes larger than the ultimate strain, the grout no
longer contributes to either the load or moment and is considered to have zero stress.
Figures §2-13a and $2-13b show the point w above which the grout has crushed. As can be
seen in Fig. §2-13a, the grout has yielded above point "v" since the strain exceeds the f,/E,
value. The amount of grout that has exceeded f; before crushing is shown by the triangular
wedge marked 'gy.” The amount of grout that carries f; is denoted by "gc’. The grout that
has crushed is shown by the dark, rectangular-shaped stress block labelled gc. The equations
are developed by considering the stress state of the grout as being at or below the yield level
(fg). It should be noted that it is the strain that controls this state, not stress, although the
stress acting on the crushed portion is still easily calculated given curvature, location of the

neutral axis and the necessary material properties.

In order to develop the equations for load and moment at the crushed condition, it is
assumed that the stress is constant over the portion that has crushed. Similarly to the
development of the equations for the yielded grout and steel under compression, two
equations are necessary for the crushing of grout - one for grout crushing above the central

axis and one for below.

Distance g is defined to be the distance from the closest crushed fiber to the location

of the neutral axis. Angle a,,, defines the extent of crushing. If g is greater than a,




(Fig. S2-13b) then o, results in Eq. $2-38a.

Forg=<sa
« = cos|Z 8| (§2-38a)
Rer R'
or, for Fig. $2-13a,
forg=a
@ = cos~1(g _ "") (S2-38b)
gor R;'

The load over a crushed portion when g < a is calculated from Eq. $2-3%a

x B [ R; sinay,, ] [Rimsam—cotumx}

P, =2f, f f rdr do + f f dy dx} (S2-39a)
2o (13 4] G

where o, , is the stress acting on the crushed section. Integration then yields the final result

per Bq. S2-39b.
P, =f, R} [® -« * cose,, sina,, ] (S2-39b)

To find the crushing load when g > a, the following equation yields the appropriate result

in Eq. $2-40a.

Cer R
P,-2[ [ fyrdde (S2-40a)
0 ’ R, cos{a E) }
[ cos{a)

The final result for the crushed load is found from the above equation
chr = f !g Riz : aga - cc”S(a"gc:r\) Sin(agcr} jg {S?«*‘ﬁ}b?!
The moment of the crushed portion when g < a (Fig. $2-13a) is determined by
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integrating the following equation Eq. §2-41a:

x ﬂ;
M, =2 f f'y r* cos(e) dr da
e 0 (S2-41a)
[Rosinlard ] [ R costay) - cotlug,) x | ]
- / fg [ Rcos(a,) -y ] dy dxf;t
0 0 i

After integration, the solution reduces to Eq. $2-41b.

2 f, R? sin’(a,) (S2-41b)
3

-

gor

Finally, the equation to find the moment of the crushed portion when g > ¢ is
Eq. §2-42a.(Fig. 52-13b)

R,
MW =7 f’g f f r? cos(a) dr da (82-42a)
cos(

(=]
]

L cos(a)

The result after integrating Eq. $2-42a becomes Eq. §2-42b.

! 2 cind
Mo 1Sy R sin'a,) (S2-42b)
ger 3

As expected, the tensile moment is equal to the absolute value of the compressive
moment. The difference in sign arises due to the choice of sign convention, tension --

positive, compression -- negative.
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S3. MATERIAL PROPERTIES

The assumptions used for both the grout and steel material models are described in
Sect. §1.3.

S3.1 Grout

$3.1.1 Modulus of Elasticity for Grout
As an approximation, the modulus of elasticity for grout is calculated from the ACT

equation recommended for concrete (§ 8.5.1 of Ref, S,

£ - w5 33 I{f/g [ksi (S3-1)

£ 1000

Where w, is the unit weight of grout.

83.1.2 Stress-Strain Curve for Grout

The assumed stress-strain curve for grout is shown in Fig. S3-1. Besides making a
simplifying assumption for the value of the modulus of elasticity of the grout, the material
model for grout is assumed to be linearly elastic-perfectly plastic. However, once the strain
in the grout attains the value of the ultimate strain, ¢, = 0.003, the grout is assumed to be
crushed and unable to carry any additional stress. Further developments in analysis will
require better knowledge of the stress-strain (0-¢) relationship for grout.

83.2 Steel

53.2.1 Stress-Strain Curve for Steel
Steel is assumed to have a linearly elastic-perfectly plastic stress-strain relationship,

as shown in Figure $3-2. Strain hardening effects are not taken into consideration nor is
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strain reversal. Once the strain in any portion of the steel shell becomes greater than the

yield strain, the slope of the stress-strain curve becomes zero up to an infinite strain value.

It is recommended that for subsequent development of the material model of steel,
strain hardening effects be considered. Since the steel shell within the vicinity of the dent
is plastified, this portion of the steel may pick up additional load due to strain-hardening.
Thus, the inelastic behavior of the damaged, grout-filled specimen may be better represented.
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S4. ALGORITHM FOR SIMPLIFIED ANALYSIS OF
DENTED GROUT-REPAIRED TUBE SECTIONS

A computer program was developed for performing the analysis of dented, grout-
filled tubes. The logic of the program is to determine the load vs. curvature relationship for
a given tubular section with the eccentricity set to have a specified value (ey). Then, with
the preset eccentricity, the curvature and the location of the neutral axis are the two variables
which define the state of stress in the cross section. The computational procedure calculates
the initial location of the neutral axis and (Sec. §2-2), by iteratively varying the curvature,
computes the moment and axial load which give the required eccentricity (M/P= ). Then,
by changing the location of the neutral axis, the relationship between the load and curvature
is computed. The flowchart of the steps required for performing this work is shown in
Fig. S4-1. The section below explains the relevant steps of the computer program used for

these calculations (Appendix SA).

S4.1 Required Input

First, the appropriate geometrical and material properties of each specimen are read
in. Figure $4-2 shows an example input file for data. The program reads in the specimen
name and then the needed geometrical and material properties as well as the date of analysis.
The geometrical properties required are: outside diameter (D), thickness (t), dent depth
(d/D), and the preset eccentricity (e/D). The diameter and thickness values are in inches.

Then, the material properties are read in. These properties include the modulus of
elasticity of steei (E,), the unit weight of grout {w,}, the vieid stress of grout (fJ} and steel
(F,), and the ultimate strain of grout {e,). All the vield stress and modulus of elasticity units

are in ksi,
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S4.2 Computational Procedure

With the value of eccentricity specified, a trial location of the neutral axis is chosen.
Then, the computer program determines the yield curvature for steel and for grout and
selects the smaller of them as the starting curvature for the next step. The initial location
of the neutral axis is changed next and the total axial load and moment are calculated for the
starting curvature. The eccentricity is determined by dividing the moment by the load. With
the neutral axis kept at the same location, the curvature is increased by a certain percentage
of the starting value, and a new value for eccentricity is calculated. If this eccentricity is not
within a prescribed tolerance of the specified eccentricity, a third value of curvature is
calculated by linear interpolation. If, after this step, the tolerance for eccentricity is still not
reached, interpolation is repeated until the desired convergence is achieved. The resultant
axial load and curvature give one point of the load-curvature relationship. Figure S4-3
shows a sample plot of eccentricity vs. curvature for a fixed location of the neutral axis. The
details of the interpolation are discussed further in the next section. The neutral axis is
changed, and a new load and curvature are found in a similar way, until the load associated
with the converged eccentricity value is less than a certain percentage of the maximum load
value, or the curvature has reached the value that is three times the value at the ultimate

condition. The program stops execution at this step.

This procedure is repeated for each location of the neutral axis until there comes a
certain point where any increase in curvature, results in an increase in eccentricity. Then,
it becomes necessary to reverse the change in the location of the neutral axis. For example,
if the distance between the central axis and the location of the neutral axis is being
decreased, then the change in location of the neutral axis is reversed and the distance is made
to increase. This behavior is a result of the tension and compression regions no jonger being
in equilibrium, and in consequence, for an increasing curvature, CONvergence of the
eccentricity can only be achieved through reversing the change of the location of the neutral

axis.
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Since the M-¢ and P-¢ relationships are linear in the elastic region, discussion here
is mainly concerned with the inelastic behavior. To construct the complete P-¢ (M= Pe)
curves, the following ranges of stress conditions must be considered:

1} Steel and grout, both elastic.

2) Grout, inelastic under compression,

3) Steel, inelastic under compression.

4) Grout crushing.

5) Grout, inelastic under tension.

6) Steel, inelastic under tension.
A more specific discussion for each stress state is presented next.

S4.2.1 Elastic Range

The program does not calculate any intermediate points for the elastic range of the
P-¢ curve of grout or steel since it is known to be linear. For an initial location of the
neutral axis, first yielding in either the grout or steel in the damaged portion is the starting

point for the computational process.

54.2.2 Inelastic Range

As the first step in the inelastic analysis for each set of values of curvature and
location of the neutral axis, the cross section 1s assumed to be undamaged and fully elastic
with the corresponding linear distribution of stresses. Then, the load and moment
contributions of the grout-core in the dent portion are subtracted. Since the steel area
remains the same, dented or undented, only the moment adjustment for the dent area is
subtracted. In Sect. $1.3, it was assumed that the grout portion in tension carries no load
or moment. Thus, these contributions are subtracted from the elastic load and moment
{Sect. 82.3.4). If the neutral axis les outside the inner diameter, there will be no subtraction
for grout under tension. A flag in the code determines whether this subtraction is necessary.

This compietes the determination of the total elastic load, given by Eq. S2-27 in
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Sect. $2.3.4, and moment of the damaged cross section (Eq. §2-28 also in Sect. S2.3.4).

Next, these values are adjusted for inelastic effects.

If grout under compression has yielded, then the portion exceeding the yield stress,
f:, is subtracted. The shape of this yielded portion is similar in shape to an "orange wedge,"
shown in Fig. $2-2. The program determines whether the yielded portion extends below the
central axis. If so, the formulas for load and moment developed for grout in compression
are used (Fgs. S2-30 and $2-31). If not, the formulas for grout in tension are used
(Egs. $2-21 and S2-23). It should be noted that the volume of this wedge is exactly equal

to the load, and the moment is equal to the first moment of the wedge volume.

If the strain in the damaged steel shell exceeds the yield level in the tension or
compression regions, the location of the yielded portion is checked to determine whether the
load and moment equations for compression or tension should be subtracted from the elastic
values. If the neutral axis lies within the cross section below the central axis, the yielded
compression portion may extend below the central axis. Then, the load and moment for steel
under compression must be used for the values of the load and moment to be subtracted from
the elastic values (Egs. §2-33 and $2-34); otherwise, the values for tension must be used
(Egs. $2-35 and S$2-37).

If the curvature is increased to the point where the strain in the grout exceeds the
crushing value (0.003 in./in.), the corresponding contributions of the load and moment must
be subtracted from the values computed up to this point.(Sect. $2.3.5.4 and Egs. §2-39,
§2-40, S2-41 and S§2-42)

Finally, the only time steel in tension can yield is when the neutral axis lies within
the cross section of the tube. The program checks the strain in this region, and, if yielding
has occurred, the load and moment values deveioped for steel in tension (Egs. S2-35 and

$2-37) are subtracted from the total load and moment.
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S4.3 Load-Curvature Pattern

The change from one yield condition to another is often quite noticeable in the P-¢
curve. Figure S4-11 shows a typical P-¢ curve. (The M-¢ curve could just as well have
been presented, since in this analysis, the moment is a direct function of the load, M=Pe.)
This curve has five distinct parts: elastic, inelastic - grout yielding, inelastic -compression
yielding of steel, inelastic - tension yielding of steel, and the crushing of grout above the
crushing strain. As each of these yielding conditions is reached, a distinct kink appears in
the P-¢ curve. Point | designates the end of the linearly elastic region and the start of the
grout inelastic region. The yielding of steel in the compression region is signified by
Point 2. Point 3 marks the peak, that is, the ultimate load. After this point, the grout strain
under the dent is greater than the crushing strain, and the grout in this area can no longer
sustain any load or moment. The curve levels off, and proceeds with gradually reducing
load until another kink occurs (Point 4), albeit not as distinct as the others. This point
signifies yielding of the steel in the tension region below the neutral axis. After this point,
the curve continues until the total load is less than or equal to a preset minimum value
(Point 5) or the curvature has reached a value that is greater than three times the curvature
value at the ultimate condition. It should be pointed out that the yielding of the grout does
not always occur first. If the yield curvature for the steel in the dent section is less than that
for the grout in this region, Points 2 and 3 would represent the yielding of the steel and then

the grout.

54.4 Interpolation Procedure

Figures S4-4 to S4-10 illustrate the interpolation procedure used in the computer
program (o determine the curvature, moment and load for a prescribed eccentricity.
Specimen P3P10 of Table S2-1 is chosen for a numerical example with the location of the

neutral axis a fixed at 8.94 inches, that is, a/R = .72 with the neutral axis within the cross
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section. This specimen had D =24.66in., t=0.321in., d =2.45in., F, = 59.3ksi,
fy = 3ksi, and e = 2.451in,

Figure S4-4 shows the anticipated plot of the eccentricity (e) vs. curvature ($)
relationship for ¢ = 8.94 in. Each point on the curve has an axial load P associated with
it {for M since M=Pe). The task is to compute the values of  and P for a given value of
eccentricity e,, which is indicated by a vertical line intersecting the curve. Since the
relationship among a, ¢, e and P (M=Pe) is very nonlinear, an iterative procedure must be
used. A trial value of curvature &, is assumed (conveniently, a slightly larger value of ¢
than described in Sect. 54.2.1). Then, the corresponding value of eccentricity e, is
determined from the procedure of Sect. S4.2.2. This point is marked on the curve. This
value of eccentricity is compared to the given input value e,. If the calculated value for the
eccentricity e, is within a prescribed tolerance taken with respect to e, (currently set into the
program to be +0.1%), then the location of the neutral axis is changed and the procedure

begins again. Usually, this is not the case, and the search must continue.

Figure S4-5 shows the second point of the procedure. This point is obtained by
incrementing the start curvature ¢, by A® which is chosen to be 10% of ®,. Figure S4-5
shows that the calculated eccentricity ¢, is still not within the tolerance (10.1%) of e,.

Theretfore, the procedure is continued in order to determine a third point closer to e,.

Using the values of e, and e, together with their respective curvature values, the third
value of @; is found by using linear interpolation. (Fig. S4-6) The new value of eccentricity
e;, marked as Point 3 in the figure, is computed but it is still not within +0.1% of the given

value e,, and the procedure is continued.

Figure 54-7 shows the fourth caiculated value (Point 4) for the eccentricity as well
as Points 1, 2 and 3 and their respective curvature values. Since e; was greater than e,, the
two closest values of eccentricity are selected and linear interpolation is used to compute the

next value of curvature, ®,. If the corresponding eccentricity is greater than e,, then the two
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closest values to €; are again chosen and the linear interpolation procedure is repeated until

€ is less than or within +0.1% of e,.

If after reaching the condition where two points are straddling the input value for
eccentricity (Fig. S4-7), the program switches to a different search procedure. A sorting
algorithm determines which point in Fig. §4-7 is farthest away from the desired point e, and
discards it. Thus, in this example, Point 1 is farthest away and is replaced in memory by
Point 2. Then, if two points are straddling e,, another sort routine is used to determine the
two closest of the remaining values that are straddling. In the case that the two closest points
are to the left of e,, the program discards the one that is farthest away from €,. This method

assures that at least two points straddle €.

After obtaining the two closest values that straddle €, the next point is found by
taking the average curvature of these two straddling points. Point 5 in Fig. 84-8 is found
in this manner. & is the average of ®, and $,. This procedure continues as Point 6 in
Fig. $4-9 is found by averaging the curvatures of Points 4 and 5, and finally, in Fig. S4-10,
the final converged point is found by averaging &, and &, (P = 0.27 X 107 in."Y). The
corresponding value of eccentricity, e = 2.449 in., is within the prescribed tolerance of
+0.1%. At this point the program writes to an output file the corresponding values for
eccentricity (Fig. $4-2b), the location of neutral axis, load, moment and curvature, Then,
the neutral axis location is changed and the last curvature value (Prp = 0.27 X 10%in." in

this case) is used for the start curvature of this location of the neutral axis.
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85. COMPARISON WITH OTHER METHODS AND
RESULTS

S5.1 Analytical Solution from Parsanejad

Parsanejad has developed an analytical expression for estimating the ultimate capacity
of grout-filled damaged tubular members based on first yielding of the steel in the dent area
from beam-column analysis.[S5] Parsanejad’s equation was used to calculate the ultimate
load for all specimens, and they are compared with the method proposed in Chapter §2.
This equation is presented here in Eq. §$5-1a.

2
[ffi} - [ ...,.I,._};__..k - m} [f_."] + % = {) (85*13)
a, g, z

where A = ..Umfi.“
Ueufer

k = Jies € (85-1b)
er
m = A:r,c.g.

A

Equation S5-1a above is solved for g, (and P, since P = 9A, 4 ) USINE the parameters listed
in Eq. $5-1b where
A is the reduced slenderness parameter.
A is the nondimensionalized parameter consisting of transformed area A, muitiplied
by the total lateral displacement (g, = € + 6 +y. where e, is the prescribed
eccentricity.

4 is the out-of-straightness,
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y is the distance beiween the centroids of the dented steel cross section and the
undamaged cross section) and divided by the transformed section modulus
taken with respect to the dented side.

m is the nondimensionalized parameter consisting of the ratio of the transformed area

of the dented cross section A, ., to that of the undented cross section A,.

$5.2 Comparison with Experimental Results from Ref. S8

Table S5-1 lists the material and geometrical properties of the three specimens (A3,
B3, C3) tested by Ricles.[S8] The dent depth for all three specimens was the same - 0.1D.
The axial load was applied with an end eccentricity of 0.2D. 1In the analysis, the given
eccentricity was taken as the sum of the lateral displacement at the ultimate (peak) load and

the applied end eccentricity e,(=0.2D), which were given in the reference.

Table S5-2 compares the ultimate loads computed using the proposed method to
experiments and the analytical method from Ref. S5 (Eq. S$5-1a). As shown in the table, the
proposed method tends to overestimate the ultimate load in most cases when compared to
experimental results, as well as to the results from the method of Ref. S5 (Eq. S5-1a). The
non-dimensionalizing value P, in the table is defined by Eq. $5-2.

P =AF,~Af", (85-2)

Table §5-3 lists the ultimate loads and corresponding curvature for each specimen.

Figures $5-1 through $5-3 give the load vs. curvature curves calculated for Specimens A3,
B3 and C3.

§8.2.1 Specimen A3
Figure 85-1 shows the computed P-¢ curve for Specimen AJ of Table §5-1. Fora
curvature of 0.564 x 107 in.", the calculated ulumaie load was 198.2 kips (0.46P,). The

ultimate axial load from experiment was 191 kips (0.44P,). The program overestimated the

55-2




ultimate load by about +3.7%. In comparison, Eq. S5-1a predicted a lower-bound value
of 143 kips (0.33P,) for the ultimate load, that is -25.2% lower than the experimental load.

$5.2.2 Specimen B3

Figure S5-2 shows the computed P-¢ curve for Specimen B3 of Table 85-1. Fora
curvature of 0.609 X 107? in.", the ultimate load was 133.8 kips, that is, 0.39P,. The test
load was 117 kips (0.34P,). Thus, the program overestimated the ultimate load by +14.4%.
Equation S5-1a gave an ultimate load of 110 kips, or 0.32P,, that is, an error of -6.0%.

55.2.3 Specimen C3

Figure §5-3 shows the computed P-¢ curve for Specimen C3 of Table $5-1. The
ultimate load was estimated to be 192..8 kips (0.47P,) at a curvature of 0.581 x 107 .t
The experimental load was 127 kips (0.29P,). The program overestimated the ultimate Ioad
by +58.0%. Equation $5-1a showed very good correlation of -1.0% with respect to the test
in this instance, giving an ultimate load of 121 kips (0.29P,).

S5.2.4 Summary
Three specimens tested by Ricles had different D/t ratios but the same relative dent

depths and end eccentricities.[S8] For an increasing D/t ratio, the ultimate load decreased
for the tests. The program overestimated the ultimate load from +3.7% for Specimen A3

to +58.0% for Specimen C3.
S5.3 Analysis of Proposed Specimens

Seven short, dented and grouted specimens proposed for testing in the current
research program at Lehigh University are analyzed in this section. These specimens are to
be made from the foliowing previously tested dented specimens of Ref. 84: Pip, P2p, P3P,
El, D1, and D3. A new specimen will be made by cutting off a still-undamaged portion of

an old specimen, denting it and then grouting it. There will be one new specimen from each
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of the old except that two will be made from P3P. The proposed specimens and their test
parameters are listed in Table 85-1. For convenience, the specimen names were kept as
those of the original specimens (but they may be changed later) except for P3P05 and P3P10
where the extensions of 05 and 10 refer to the level of denting d/D. Since experiments have
not yet been performed on these specimens, comparison will be made only with
Eq. §5-1a.[S5]

§5.3.1 'P’, ’E’ and 'D’ Specimens

Four fabricated and three salvaged specimens were analyzed by the proposed
formulation with D/t ratios ranging from 28.18 for Specimen EI to 76.32 for Specimen P3P.
Table $5-1 lists the parameters of these specimens and Table $5-3 gives their computed
ultimate loads and the corresponding curvatures. Figures $5-4 through 85-10 present the
joad vs. curvature curves for each specimen calculated by the proposed formuiation. The

peak values from these curves are compared against the ultimate loads calculated by

Eq. S5-1a.[S5]

$5.3.1.1 Specimen PIP
Figure $5-4 shows the computed P-¢ curve of Specimen P1P generated from the

program. A peak load of 803.3 kips, that is, 0.59P,, was reached at a curvature of
0.212 x 10% in.*. Equation S5-1a gave an ultimate load of 752.5 kips (0.55P,) which
differs by +6.76% from the proposed resuit.

§5.3.1.2 Specimen P2P
Figure S5-5 shows the computed P-¢ curve of Specimen P2P generated from the

program. A peak load of 1275.8 kips (0.49P,) was reached at a curvature of
0.214 x 107 in..  In comparison, the ultimate load calculated by Eq. S5-la was
1084.4 kips {0.42P,). The difference between the two methods is shightly larger than that
for Specimen P1P. The calculated difference with respect to Eq. S5-lais +17.6%.
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85.3.1.3 Specimen P3P

Figure $5-6 shows the computed P-¢ curve of Specimen P3P with a §% dent depth
generated from the program. A peak load of 2166.9 kips (0.48P,) was reached at a
curvature of 0.127 x 10° in.". Equation S5-1a yielded an ultimate value of 2513.9 kips

(0.55P,), giving a difference of -11.6%.

Figure S5-7 shows the computed P-¢ curve of Specimen P3P with a 10% dent depth
generated from the program. A peak load of 2064.9 kips (0.45P,) was reached at a
Curvature of 0.143 x 10% in.t. Equation $5-1a yielded a value of 2138.8 kips (0.47p,),

giving a very reasonable deviation of -3.58%.

S3.3.1.4_Specimen El

Figure S5-8 shows the computed P-¢ curve of Specimen El generated from the
program. A peak load of 602.4 kips (0.52P,) was reached at a curvature of
0.383 x 10% in.". Equation $5-1a gave a peak value of 388 kips (0.34P,), yielding a
difference of 55.1%.

55.3.1.5 Specimens DI and D3

Figure $5-9 shows the computed P-¢ curve of Specimen DI generated from the
program. A peak load of 623.9 kips (0.55P,) was reached at a curvature of
0.358 x 10” in.". Equation S5-1a gave a peak value of 474.7 kips, that is, 0.42P,. The
resulting difference with respect to Eq. S5-1a was 31.4%.

Figure $5-10 shows the computed P-¢ curve of specimen D3 generated from the
program. A peak load of 880.5 kips, or 0.57P,, was reached at a curvature of

0.280 x 107 in.". For Specimen D3, Eq. 85-1a yielded an ulfimate value of 530.4 kips
(0.41P,), giving a deviation of 397%.
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S5.4 Comparisons with Undamaged, Grout-Filled Specimens

Three undamaged specimens tested with an eccentric load by Wimpey Offshore were
analyzed, and the results are compared to the tests.[S3] The geometric and material
properties of these specimens are listed in Table S5-1 and the computed and experimental
ultimate loads in Table $5-2. Figures $5-11 through S5-13 show the computed P-¢ curves
for these undamaged, grout-filled Specimens W1, W3 and W5, respectively. The ultimate
experimental load and the ultimate load calculated by Eq. S5-1a are shown as well. As
expected, the formulation is more accurate for shorter than longer specimens. The computed
result for the shorter specimen, Specimen W1, is quite respectable -- 10.1% greater than

experimental.
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S6. PARAMETRIC STUDY

S6.1 Parametric Study

analyzed in this study. From the analysis of these specimens a preliminary and simple
parametric study for the effect of D/t, d/D, F, and f; is performed here. (No attempt was

consistent correlations.) In each graph, comparison is made between the proposed
formulation (Eq. S5-1a) and the test results. The results from Eq. S5-1a are marked with
an X-filled square, the proposed formulation with a filled triangle and experiments with an

X.

S56.2 Diameter-to-Thickness Ratio (D/t)

A significant parameter for the ultimate strength is the D/t ratio. As seen in
Table $5-1, the D/t ratio ranged from approximately 16 to 77. Figure $6-1 shows the effect
of D/t ratio on the nondimensionalized ultimate strength for all specimens analyzed in this
study. It appears that the proposed formulation correlates better for the specimens with D/t
ratios between 20 and S0 than for the specimens with D/t below 20 or above 50. However,

more data is needed to make a more accurate conclusion.,

S$6.3 Dent Depth-to-Diameter Ratio (d/D)

The depth of the dent is 2 significant pararmeter that affects the ultimate strengih of
4 repaired, dented tubular member. Figure $6-2 shows that the nondimensionalized ultimate
load calculated from the proposed formulation correlates well with the results from Eq. §5-1a
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and tests for /D = 0.05 to 0.15. However, for undented specimens (/D = 0) and
specimens with d/D greater than 0.15, the difference is greater.

$6.4 Yield Stress

The yield stresses of grout (f}) and steel (F,) affect the ultimate load. Figure S6-3
shows a plot of steel yield stress versus the nondimensionalized ultimate load. It appears that
the proposed method compares better with Eq. $5-1a and experiments for lower values of
yield stress (< 60 ksi). Only one specimen was analyzed with the highest yield stress value
of 70.9 ksi, and the values for the nondimensionalized ultimate load from the proposed
method and Eq. S5-1a differed significantly. More specimens with higher yield stresses are
needed for further study.

Figure $6-4 shows the effect the grout yield stress has on the nondimensionalized
ultimate strength. For a grout yield stress below approximately 7 ksi, the difference between
experiments (Eq. $3-1a) and the proposed formulation is at most 25% with respect to the
proposed formulation. At yield stress levels above 7 ksi, the two methods and experiments

have greater discrepancy.
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§7. SUMMARY, CONCLUSIONS AND
RECOMMENDATIONS FOR FUTURE RESEARCH

S7.1 Summary and Conclusions

The moment-thrust-curvature (M-P-®) relationship of grout-repaired dented tubular
sections was studied by deriving formulas as functions of the level of deformation. The steel
tube was assumed to have a bi-linear stress-strain relationship with unlimited straining at the
yeild stress level (F,). The grout core was idealized to have a bi-linear elastic-plastic stress-
strain relationship with the straining at the ultimate (yield) level (£)) limited by the crushing
strain. The grout was assumed to have no strength in tension. Furthermore, the strain
variation in the cross section was assumed to be planar and the axial strains in the steel shell

and the grout core to be fully compatible

The formulas were developed as functions of the limiting positions of the neutral axis
(within or outside of the cross section) and of the level of curvature to Initiate yielding in

steel and/or yielding or crushing in the grout,

A tnal-and-error procedure based on a gradual change of the location of the neutral
axis (N.A.) and the value of curvature was used to determine the axial load and curvature
for a preset load eccentricity. A series of such solutions for an increasing value of the load
eccentricity provided data for plotting the load vs. curvature relationship of the cross section.

The peak of the curve defined the ultimate axial load P,.

Although the computations involved CAN be performed manuaily or, more
efficiently, by using a programmable calculator for some individual case, a FORTRAN

computer program was written to carry out the calculations of the many cases of this study,




After developing the method, a simplified analysis was performed to calculate the
ultimate strength, and comparison was made with the available experimental data and an
analytical method. Thirteen full-scale, grout-filled, dented and undented specimens under
eccentric loading were studied to investigate the moment-thrust-curvature (M-P-9)
relationship and ultimate strength. Then, a simple parametric study was performed on the
following four parameters: diameter-to-thickness ratio (D/t), extent of damage (d/D), steel
yield stress (F,), and grout yield stress (f;). In this study, the D/t ratio ranged from 16 to
77, the d/D ratio from 0.0 (no dent) to 0.2,F, from33t0 71 ksi and f; from 3 ksi to slightly
greater than 10 ksi.

In determining the ultimate load, P,, the results from the proposed method were found
10 be less conservative than the results from experiments and Eq. 85-la. However, when
the length effects were included, the results from the numerical procedure correlated very
well with the results from experiments and the analytical method. In the best case, for
Specimen A3, the method predicted the ultimate load to within approximately 4% of the
experimental and 38% of the load calculated by Eq. S5-la. In the worst case, for undented
Specimen WS, the procedure overestimated the experimental ultimate load by a large amount.
Equation $5-1a also overestimated the ultimate load, but not by as much. This specimen had
the lowest D/t ratio of all the specimens analyzed. It also had the highest steel yield stress
value among all the specimens (70.9 ksi) and one of the highest for grout (9.29 ksi).

The proposed procedure was not conservative in estimating the ultimate load. It
appears from the parametric study that the procedure better predicts the ultimate load for
specimens having a D/t = 20 t0 60, a d/D = 0.05 to 0.15, a steel yield stress F, = 30 to

60 ksi, and a grout yield stress f; less than 7 ks,
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S7.2 Recommendations for Future Research

To more adequately estimate the ultimate load and generate the M-P-¢ relationship

for grout-filled, dented tubular members, the following work is recommended:

1) More testing needs to be done to extend the database of knowledge about the parameters
(D/t, d/D, F,, f;) that affect the ultimate strength of grout-filled tubular members. Then, a
more comprehensive parametric study can be done. Currently, seven specimens are
proposed for testing at Lehigh University. These specimens have already been analyzed in
this study.

2) An improved algorithm for determining the M-P-& relationship should be developed, for
one, by including a more realistic stress-strain relationship for grout and to consider the
possibility of local buckling in the steel shell. Currently, the material model for grout is
assumed to be elastic-perfectly plastic with the elastic modulus determined from the ACI
formula.[S1] Since the stress-strain relationship for grout is known to be nonlinear, it is

important to model the actual behavior of the grout.
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S10. NOMENCLATURE

Distance from the location of neutral axis to horizontal axis passing
through the center of the undamaged cross section. [in.]

Distance from the location of the neutral axis to the centroid of the
damaged, cross section. [in.]

Area of grout core. [in.?]

Area of the steel shell for a damaged, circular cross section. Assumed
to be equal to the undamaged cross section. [in.?]

Area of undamaged transformed cross section. [in.?]
Area of damaged transformed cross section. [in.?]

Distance from the location of the neutral axis to the closest yielded steel
fiber in the tension region. [in.}

Distance from the location of the neutral axis to closest yielded grout
fiber in the compression region. [in.]

Dent depth. [in.]
Diameter. [in.]
Prescribed end eccentricity. [in.]

Total end eccentricity including out-of-straightness and centroid shift of
damaged cross section. (¢,= e, + & +y) [in.]

Modulus of elasticity of grout from ACI formula, Ref. S1. [ksi}
Modulus of elasticity of steel. [ksi]
Distance from the location of the neutral axis to the closest yielded steel

fiber in the compresion region. [in.]
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Maximum stress due to the ultimate experimental load P,. [ksi]
Yield stress of grout. Used in calculations. [ksi]

Ultimate tensile stress of steel. [ksi]

Yield stress of steel. Used in calculations. [ksi]

Distance from location of the neutral axis to the closest crushed grout
fiber. [in.]

Transformed moment of inertia with respect to the central axis of the
undamaged tube. [in.%]

Transformed moment of inertia of damaged cross section about the
center of the undamaged cross section. [in.*]

Moment of inertia of the grout area for the damaged cross section. [in.%]
Moment of inertia of the steel shell for the damaged cross section. [in.*]

Transformed moment of inertia about the centroid of the damaged cross
section. [in.*]
Nondimensionalized parameter that is the product of the transformed

damaged area and total eccentricity divided by the transformed section
modulus taken with respect to the dent side. (Ref. §5)

Length of tube. (Ref. §5) [in.]

Nondimensionalized parameter that is the ratio of the transformed area
of the damaged cross section to the undented cross section. (Ref. 85)

Moment of crushed grout portion. [k-in.}
Steel moment lost due fo dent. [k-in.]

Elastic moment acting on undamaged cross section. [k-in.]
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Elastic moment contribution of undamaged grout area. [k-in.]
Moment of yielded grout portion in compression. [k-in.]
Moment of dented portion. [k-in.]

Moment of yielded grout portion in tension. [k-in.]

Elastic moment contribution of undamaged steel area. k-in.]
Moment of yielded steel portion in compression, [k-in.}
Moment of yielded steel portion in tension. [k-in.]

Nondimensionalized ratio of the steel elastic modulus to the grout elastic

modulus,

Total elastic load acting on undamaged cross section. [kips]
Elastic load contribution of undamaged grout area. [kips]
Load of yielded grout portion in compression. [kips]
Load of dented portion. [kips]

Load of crushed grout portion. [kips]

Load of grout portion in tension, [kips]

Elastic load contribution of steel area. [kips]

Load of yielded steel portion in compression. [kips]
Load of yielded steel portion in tension. [kips]

Yield load. [kips]

First moment of area {static moment of inertiaj of corroded cross

section. {in.’]
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Yam,c

First moment of area for the solid grout core of a damaged, circular

cross section, [in.?]

First moment of area for the steel shell of a damaged, circular cross
section. [in.?]

Inner radius. [in.]

Mid-thickness radius. {in.]

Transformed radius of gyration of damaged cross section. [in.]
Thickness. [in.]

Grout weight. [pci - bs./in.]

Centroid shift. (Distance between centroid of the damaged cross section
and center of the undamaged cross section) [in.]

Lever arm of steel portion above flattened segment in dented area. {in.]

Transformed section modulus taken with respect to dented
side. (Ref. 85) [in.%}

Nondimensionalized parameter used in local buckling formulas.
Angle subtending dented portion of damaged cross section. {rads.]
Angle subtended by yielded portion of grout in compression. [rads.}
Angle subtended by crushed portion of grout. [rads.]

Angle defining the location of the neutral axis when the neutral axis is

focated within the cross section. {rads.]
Angle subtended by yielded portion of steel in compression. [rads.]
Angle subtended by yielded portion of steel in tension. {rads.]

Qut-of-straightness. {in.]
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Ultimate, or crushing, strain of grout. (e..= 0.003) [in./in.]
Ultimate strain of grout. [in./in.]

Yield strain of grout. [in./in.]

Yield strain of steel. [in./in.]

Reduced nondimensionalized slenderness parameter, (Ref. S5)
Curvature. [in."]

Yield curvature of steel for the undamaged cross section. [in.”}}
Euler buckling stress. (o, = 2* E, 1,/L?, Ref. $5)

Elastic grout stress. [ksi]

Elastic steel stress. [ksi]

Ultimate stress. (0, = P,A, . ¢.» Ref. 85) [ksi]
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Table S5-1: Material and Geometric Properties of Specimens,

Spec. | Ref J§ Test b t L tube dent | End } Da Y Area Fy fg
No. in) {in} () {in) | Ecc. {in"2} (ki) {xsi}
{ing
1 2 3 4 5 8 7 8 el 10 11 12 13
pip [ - [ 15.13 1 0260 | 1200 | 075 | 150 | 58.13] 005 | 179.60 | 4270 | 300
Pep 1 - P 1722 1 0375 | 1200 | 238 | 170 §4591] 014 | 23305 | s57.43 | 300
paros kb . Po| 24861 03211 1200 | 120 | 245 | 7682 005 | 47778 | 5930 3.00
PaP10 ] - P 2486 | 0321 | 1200 | 245 | 245 7682 040 | 47773 | 5040 | 300
E1 - p 1057 | 0375 | 1000 | 208 | 104 | 2818] 020 | 8793 ! 5327 | 300
] . P 1054 | 0360 | 1000 | 155 | 104 §2928] 015 | 8745 | 5419 3.00
03 - p 1377 .0444 | 1000 | 217 | 136 §31.021 016 | 14927 | 4395 | 200
A3 F ss E 875 | 0247 | 1490 | o088 | 3.02 | 3542] 010 | 8021 3480 | 438
B3 J s8 E 873 | 0187 1 1481 | 086 | 373 4667 010 | 5988 | 3340 | 588
G g8l E | 87| 0135 1501 | 086 | 279 §6452) 040 | 5962 | 3940 | 690
Wt F 53 E 858 | 0118 ] 7.08 000 | 21 §7257| 0001 5761 6060 L 10.15
W3 § S3 E 671 £ 0177 | 1103 | 000 | 162 | 37.94| 000 | 3546 | 5860 | 845
ws I 83 E 628 | 0374 | 1463 | 000 | 143 [ 1679] 000 | 3120 | 7000 | 929

1 - Legend for Column 3
P - Proposed for testing
E - Tested previousiy




Table §5-2; Ultimate Load Comparison between
Experiments and Analytical Methods.

Pu/Py F analysis / P test
% 1
SPECIMEN TEST PARSANEJAD | PROPOSED | PARSENEJAD | PROPOSED

PP - 0.554 0.591 - -
pzpP - 0.419 0.483 - -
P3POS - 0.551 0.475 - -
P3P0 - 0.469 0.4583 - -
El - 0.338 0.524 - -

bt - 0.416 0.547 - -

D3 - 0.411 0,574 - -

PROPOSED SPECIMENS|__ Average - :
Std. Dev 0.073 0.048 - -

TESTED SPECIMENS | Average 0.322 0.466 1057 1.594
Std. Dev 0.029 0.041 0312 0.703

1 - From Ref. S5.




Table $5-3: Nondimensionalized Ultimate Load and Corresponding Nondimensionalized
Curvature Calculated by Proposed Formulation.

Ultimate
Specimen Load Curvature
(PuPy) Qu/ys
P1P 0.591 1.13
P2P 0.493 0.97
P3P, 0.05 0.475 0.79
P3P, 0.1 0.453 0.89
E1 0.524 1.14
D1 0.547 102 |
D3 0.574 1.32
A3 0.457 2.06
B3 0.388 244
C3 0.465 1.98
W1 0.467 0.96
W3 0.514 0.96
W5 0.507 077

where ¢y= Fy and ¢uis the curvature at the ultimate condition.
(EsR)
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] - Or iginal Undented Cross Section

ldealized Damaged Cross Section

Figure 81-1 Idealization of Dented Cross Section of a Tubular Member
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Figure S2-1a: Grout in dented portion.
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Figure S2-1b: Siesi in dented portion,




Figure $2-2: Grout stress wedge.

Figure 82-3: Steel stress rind.




Note: C - Center of Undamaged Tube.

Figure 52-4: Location of Centroid (c.g.) for a Damaged Tube.
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Figure S2-5a: Grout Area of Damaged Tube.
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Figure 52-5b:Preserved Stesl Area of Damaged Tube.
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Figure S2-7: Tension Region for Grout.
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Note: V.. = lever-arm for steel rind in dented portion.

Figure S2-8a: Loss of Steel Moment Due to Dent -- Inelastic Conditon.
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Note: Varc = lever-arm for steel rind in dented portion.

Figure 52-8b: Loss of Steel Moment Due to Dent -- Elastic Condition.




Figure S2-9a: Compression Region for Grout Above the Central Axis.

Eyvo=f /Eq

Figure $2-9b: Compression Region for Grout Extending Below Central Axis.
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Figure S2-10: Components of Grout Compressive Area.
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Figure S2-11a: Compression Region for Steel, a < f.
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Figure $2-11b: Compression Region for Steel, a > f.
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Figure S2-12: Tension Region for Steel.
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Note: Equation for grout crushing in compression region includes portion
marked above by gc, tens.

Figure 52-13a: Crushing of Grout -- Neutral Axis Lies Outside Cross Section.

Ecr= 0003

Dented pontions

Figure S2-13b: Crushing of Grout -- Neutral Axis Lies Within Cross Section.
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Figure S3-1: Material Model Used for Grout.
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Figure S3-2: Material Model Used for Steel.




Get Material and Geometric

Properties from File
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Properties and
Location of NA., a
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Giet start curvature:
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S

Calculate P, M, e
——#=  from Integration
Formulas

Error=Abs((e-e g)/eqg) |

Error < Tolerance

Yes
Y

No

Output P.M.e A, 0 to File

increase curvature

0=0+A0

Figure S4-1a: Flowchart of Computer Program, 'SIMGT.F".
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Figure S4-1b: Flowchart of Computer Program, 'SIMGT.F', continued.




P1P 7.5 0.26 30000.0 150.0 3.0 42.7
8/14/94 0.1 0.003 0.05

(SPECIMEN) (THICKNESS) (E,) (WEIGHT OF GROUT) () (F,)
(DATE)  (¢/Dratio)  (ou) (d/D)

Figure S4-2a: Example Input Data File for Program-- Specimen T1-P1P.

Specimen: PiP
Data: 8/14/94
ECCENTRICITY NA LOC. MOMENT LOAD CURVATURE
fny gire) {k-irs) {kips) {170,
0.00 0.0G GO0 0.00 0.00

GROUT ABOVE N.A. HAS YIELDED
STEEL ABOVE N.A. HAS YIELDED

1.50 11.82 884.43 576.03 SAG0E-05
1.50 11.40 8971 598.31 5787805
150 11.28 920.28 813 6.016E-G5
1.50 1117 843.3 £28.58 6.267E-05
1.50 1105 964.89 64319 £.520E05
1.50 10.93 985.8 8573 B.778E-08
1.50 10.82 1006.6 671.35 T.O48E-05
1.50 10.70 1027.8 685.63 7337E-05
1.50 10.58 1048.9 70048 7.647E.05
1.50 10.47 10727 715.41 7.975E-05
1.50 10.35 1083.3 728.88 B8.301E-05
150 10.24 1100.7 734 852405
1.50 1012 1107.8 737.96 8.735E-05
1.50 10.00 11135 742.08 B.984E-05
1.50 9.89 1118.8 745.85 9.197E-05
1.50 877 11238 749.32 8.437E-C5
1.5C 9.66 11285 752.58 9.685E-05
1.50 9.54 1133 755.85 9.843E-05
1.50 942 1137.2 788.57 1.021E-04
1.50 5.31 11413 761.38 1.048E-04
1.50 2.18 11452 764,08 1.079E-C4
1.5¢ 8.07 1148.8 766.64 T10E-04
1.50 8.96 1152.6 76416 1.143E-04
1.50 8.61 1163.8 776.04 1.262E-04
1.50 .28 11744 782.85 1.386E-04
1EQ 803 1180.1 787.43 1.488E-04
1.50 7.79 1186.9 791,78 1.628E-04
1.50 756 1184.1 798.18 1.788E-G4
1.50 7.33 12013 800.63 1.990E-04
1.50 7.21 1204.9 B803.28 2.119E-04
1.50 7.10 11969 7987 2215804
1.80 6.98 11822 7BB.52 2.281E-04
180 6.63 11274 751.49 2512E-G4
.50 828 10824 G144 ZBITEC8
150 8.4085 FH1 45 554.08 3184E-04
1.50 583 325.96 G154 3.518E-04
STEEL BELOW N.A. HAS YIELDED
1.50 585 B48.18 583.79 4 S20E-04
1.50 387 808.91 538.74 5.082E-04
1.50 591 780.1 519.77 5580804
150 597 T55.96 503.74 8149804
1.50 808 736,98 48129 §.764E-04

Figure 54-2b: Example of Output File from Program.




Curvature ¢ (1/in.) x 107

e vs. ¢ for Specimen T4-P3P10, a = 8.94 in.

0.36 T
034 b | ]
o3z b |
0.30 |- eg=2.45 in. ]
028 | ]
0.26 |- ]

0.24 + -

0-22 i i £ 1
2.35 2.40 2.45 2.50 2.55 2.60 2.65

Eccentricity e (in.)

Figure $4-3: Typical e-¢ Curve.



Curvature ¢ (1/in.) x 103

e vs. ¢ for Specimen T4-P3P10, a = 8.94 in.
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0.30 b

0.28 F
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0.24
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f1=0.236¢ 10°

eg= 2.45in. i

0.22
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2.40

Figure 54-4;

2.45 2.50 2.55 2.80 2.65
Eccentricity e (in.) e1=2 624

First Point of Interpolation Scheme.




e vs. ¢ for Specimen T4-P3P10, 2 =8.94 in.

0.36
@
¢y L34k
=
’g 0.32 } i
=
'e.
0.30 p- i 1
Bg = 2, .
o g=2.45in
=
g 0.28 | ]
3 -
0.26 ph 7
61 = 0.236x 10 Point 1
S S S ’
e2 = 2.487 in.
0.22 . 4 - : ;
2.35 2.40 245 2.50 2,58 2.80 X
Eccentricity e (in.) ef = 2.624

Figure S4-5: Second Point of Interpolation Scheme.




Curvature ¢ (1/in.) x 10°

e vs. ¢ for Specimen T4-P3P10, a = 8.94 in.

£.36 T
0.34 -
0.32 - .
0.50 - &g = 2.45 in. -
2T $3=0.266X T _ -
Point 3
&<} FPoint 2
0.26 e~ 92 =0.260x 10 i
oz b 01=0236x10" . Point1 |
| . e2=2487in.
0.22 ] 4,!‘ 1 i 1
2.35 2.40 245 2.50 2.55 2.60 2.65
- Eccentricity e (in.) o1 = 2.624
e3 =2.462in.

Figure 54-6: Third point of interpolation scheme.




Curvature ¢ (1/in.)x10°

e vs. ¢ for Specimen T4-P3P10, a = 8.94 in.
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eg=2.45in.
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T
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84 = 2.426 in. e3 = 2.462 in.

Figure $4-7: Fourth Point of Interpolation Scheme.
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Curvature ¢ (1/in.)x107®

avs. ¢ for Specimen T4-P3P10, a = 8.94 in.

0.38

4.34 n

0.32 -

030 1 &g = 2.45 in. -

Point 4

028 E ) .
o4 = 0.277x10° Point 5

0.26 | ' .
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0.22 i ; i 1 i

235 2.40 2.45 2.5¢ 2.55 2.60 2.65
Eccentricity e (in.)

ed = 2,426 in. €5 =2.453 in.

Figure 54-8: Fifth Point of Interpolation Scheme.
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e vs. ¢ for Specimen T4-P3P10, a=8.94 in.
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Figure 54-9: Sixth Point of Interpolation Scheme.
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Curvature ¢ (1/in.)x 103

avs. ¢ for Specimen T4-P3P10, a = 8.94 in.

0.38
(.34 ¢ -
032 f _ 4
eg=2.45in.
030} Final Point, & = 2.449 in ]
Point 6| $=0.27 t/in.x 10
0.28 i
A o Point 5
» 3
oz | 06=0.273x 10 ]
05 =0.269x 10° |
0.24 Point 1
0.22 ' _— L i :
2.35 2.40 2.45 250 2.55 2.60 2.65

| Eccentricity e {in.)
e6=2.439 in.e5 = 2.453 in.

Figure S4-10: Final (Converged) Point of Interpolation Scheme.



Load P (kips)

P vs. ¢ for Specimen T4-P3P-10 - eg=0.10D, d=0.10D
2500 1 Y 1 T ¥ T ; T 1
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0 i i H 1 I ] i H H
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Curvature ¢ (1/in.)

Figure S4-11: Typical P- ¢ Curve.




Nondimensionalized Load P/P,

Nondimensionalized Load P/P,

¢8 p
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Nondimensionalized Curvature ¢/¢ys

Figure 85-1: P vs. ¢ curve for Specimen A3. (Ref. S8)
P/Py vs. §/by for Specimen B3, eg=0.43D, d=0.1D
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Figure 85-2: P vs. ¢ curve for Specimen B3. (Ref. $8)




Nondimensionalized Load PP,

RJF vs. /. for Specimen C3, eg=0.32D, d=0.1D
H EH
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Nondimensionalized Curvature &/6,,

Figure S5-3: P vs. ¢ curve for Specimen C3. (Ref.

7.0

S8)




Nondimensional Load P/Py

Nondimensionalized Load P/Py

PPy vs. &/dys for Specimen T1-P1P, eg=0.1D, d=0.050
H H 3

08

0.7 p

06 |

H

“plppphipm” o

Pu, proposed = 0.59 py

05

03 F

a2 -

0.1 B

Pu. parsanefad = .55 Py

0.6

1.0 .28 ) 3.0 4.0
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Figure S5-4: P vs. ¢ curve for Specimen T1-P1P. (Ref. 54)
P/Py vs. ¢/0ys for Specimen T2-FP2P, eg=0.1D, d=0.14D
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Figure 85-5: P vs. ¢ curve for Specimen T2-P2P. (Ref. 54)
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Nondimensionalized Load PIR

hondimensionalized Load P/P,

P/P,vs. $/6y for Specimen T3-P3P-05, eg=0.10, d=0.05D
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Figure $5-6: P vs. ¢ curve for Specimen T3-P3P. (Ref. 54).
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Figure $5-7: P vs. ¢ curve for Specimen T4-P3P. {Ref. 54)
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Nondimensionalized Load P/R

P/P, vs. 6/0.. for Specimen T5-E1, eg=0.1D, ¢d=0.2D
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Figure S5-8: P vs. ¢ curve for Specimen T5-E1. (Ref. S4)
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Nendimensionalized Load P/Py

Nondimensicnalized Load P/Py

P/Py vs. &/¢w for Specimen T6-D1, eg=0.1 D, d=0.18D
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Figure S5-9: P vs. ¢ curve for Specimen T6-D1. (Ref. 54)

PIPy vs. §/dw for Specimen T7-D3, eg=0.1 D, d=0.18D
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Figure S5-10: P vs. ¢ curve for Specimen T7-D3. (Ref. S4)
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Nondimensionalized Load PiPy

Nondimensionalized Load P/P,

P/Pyvs. /v for Specimen W, eg=0.1D, No Dent
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Figure S5-11: P vs. ¢ curve for Specimen W1. (Ref. S3)
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Figure $5-12: P vs. ¢ curve for Specimen W3. (Ref. S3)
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Nondimensionalized Load P/Py

P/P, vs. t/6ys for Specimen W5, eg=0.1D, No Dent
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Figure S5-13: P vs. ¢ curve for Specimen W5. (Ref. S3)
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Figure S6-1: Nondimensionalized Ultimate Load vs. Diameter-to-thickness ratio, D/t.



Nondimensionalized Uitimate Load, Pu/Py
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S6-2: Nondimensionalized Uttimate Load vs. Dent depth

to-diameter ratio, d/D.



Nondimensionalized Ultimate Load, Pu/Py
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Figure $6-3: Nondimensionalized Ultimate Load vs. Steel Yield Stress, F,



Nondimensionalized Ultimate Load, Pu/Py
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Figure $6-4: Nondimensionalized Ultimate Load vs. Grout Yield Stress, f;.



Appendix SA: Computer Program 'SIMGTD.F’

Copies of the FORTRAN-77 computer program can be obtained from:

Professor Alexis Ostapenko

Lehigh University

Fritz Engineering Laboratory

13 E. Packer Ave.

Bethlehem, PA 18015
Tel: (610) 758-3517
E-mail: a003@Lehigh.edu

SA-1



